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ABSTRACT 
 

Plasma enhanced magnetron technology utilizes an externally electron source to generate plasma 

in addition to conventional DC magnetron plasma.  The technology was used to clean ASTM 

A723 steel surfaces prior to deposition, and to deposit adhesive coatings with improved 

properties.  Ta coatings up to 286 µm were sputter deposited on flat and curved specimens cut 

from an A723 steel cylinder with 120mm diameter, with and without a sputtered Cr interface 

layer.  It was shown that with enhanced surface cleaning prior to deposition and enhanced 

deposition with proper residual stress control, dense, adhesive, crack-resistant, pollution-free 

coatings can be deposited directly on A723 steel.  Fractured surface of Ta showed excellent 

microvoid coalescence with ductile mode of fracture. Adhesion tests including groove test, cyclic 

pulsed laser heating test, and vented erosion simulator test demonstrated excellent adhesion, 

good structural and wear and erosion properties.  Plasma enhanced PVD technique, analytical 

and adhesion testing results, and applications of the technology for potential electroplated Cr 

replacement are discussed. 

 

INTRODUCTION 
 

Transitional metals Cr and Ta have attractive properties to protective substrate steel against high 

temperature wear and erosion: High melting point temperature (Ta: 2996C, Cr: 1857C) 

compared to steel at 1535C, chemical inertness, good ductility and formability, thermal and 

mechanical properties compatible with substrate steel.  Ta is deposited in two phases: a softer 

and ductile stable bcc -phase, and a hard meta-stable tetragonal -phase.  Thick Ta coatings 

have been deposited on the interior surfaces of 120mm A723 steel cylinders using DC cylindrical 

magnetron sputtering systems [1-4].  Ta has also been deposited on a 20mm rifled tube using a 

triode sputtering system [5-6].  

 

In a plasma enhanced DC magnetron system, external plasma is generated by an electron source, 

besides the conventional DC magnetron generated plasma [7-8].  The higher current density 

compared to conventional DC magnetron can more effectively clean up the substrate and to 

deposit quality coatings.  A parametric investigation of Ta and Cr coating depositions using a 

planar magnetron sputtering system was reported [9].  A plasma enhanced cylindrical magnetron 

system has been constructed for deposition on the interior surface of a cylindrical structure [10].  

Preliminary tests showed promising results, which will be reported in another paper.   In this 

work, thick α-Ta coatings up to 286 µm were deposited on ASTM A723 steel with and without a 

sputtered Cr interface layer in an enhanced planar magnetron system and analytic and adhesion 

tests were performed. 

 

EXPERIMENTAL PROCEDURES 

The schematic of a plasma enhanced magnetron system is shown in Figure 1.  The filament 

generates independent global plasma in addition to the DC magnetron generated plasma.  When 

electrons are generated from the filament source, they are accelerated to the chamber wall due to 

the positive potential.  On the way to the wall, the electrons will experience collisions with the 
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neutral gas in the vacuum chamber such as Ar or Kr; and ionization occurs because of the high 

energy of the electrons (~100eV).  As a result, plasma is generated.  This electron-source 

generated plasma is independent of the magnetron-generated plasma.  There are a number of 

advantages of this technique.  First, during the substrate sputter-cleaning, the magnetrons do not 

need to be operated, while the electron-source generated plasma alone is sufficient to clean the 

substrate.  In this way, deposition will not occur and cleaning is assured.  Second, during the film 

deposition, the ion bombardment from the electron-source generated plasma is very intensive 

and the current density can be 25 times higher (current density at the substrate can increase from 

~0.2mA/cm2 to ~4.9 mA/cm2) than that with the magnetron-generated plasma alone.  Third, the 

magnetron power can remain virtually unchanged.  Consequently, a high ion-to-atom ratio can 

be achieved.   The experimental conditions including cleaning and deposition parameters and 

characterization results are listed in Table 1: 1) Ta coatings on steel (Ta1-Ta5); 2) Ta on Cr on 

steel (Ta/Cr1-Ta/Cr5); 3) Thick Ta on steel (Ta12-2-Ta13-20).  Note that sputter clean and 

deposition were carried out at 1.5-2.0 mTorr of Ar or Kr; Id is the discharge current used during 

the process, which is related to the plasma density; Vb and Ib are the sample holder bias voltage 

and the total current, respectively.  

SURFACE OXIDES ON A723 STEEL AND PLASMA ENHANCED ION 
CLEANING 

A723 steel samples were cut into 1”x1/2”x1/8” and mechanically polished using 1µm diamond 

paste.  Since ion cleaning to remove the surface oxide is of critical importance for coatings 

adhesion, a number of samples were purposely oxidized in a furnace at 350 °C for 3 hours.  This 

was to ensure a much thicker oxide layer than the native surface oxide formed on the surface.  

The comparison of the native oxide layer and the thermal oxide layer on A723 steel is shown in 

Fig. 2.  The oxygen concentration depth profiles were taken using Auger Electron Spectroscopy 

(AES).  Based on the AES analysis, thermal oxides are at least 20 times thicker than “native” 

oxides.  Hence, it is believed that if the thermal oxides can be removed in sputter cleaning, it will 

be very safe to say that cleaning procedure is successful. 

An innovative alternative technique for the cleanness study is to heat the steel samples at 350C 

for 3 hours in O
18

 instead of O
16 

atmosphere, in order to differentiate it from native oxides 

residing on the steel surfaces.   The oxidized samples were then ion sputter cleaned in Ar at Id 

=10 Amp and Vb= 120 volts for 30, 60, 90 minutes; then sensitive Secondary Ion Mass 

Spectroscopy (SIMS) analysis was performed to obtain concentration depth profile.  The data 

showed that ion cleaning for 60 minutes is sufficient to clean off all native and heat-generated 

oxides.  In Fig. 3, SIMS data for Ta6 with no ion cleaning is shown in comparison with Ta 11 

after 60 minutes cleaning.     
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ENHANCED PVD COATINGS DEPOSITION AND CHARACTERIZATION 
 

a. In Table 1, cleaning and deposition conditions and characterization results for samples used 

in this investigation are listed.  The Ta1-Ta4 samples were deposited at discharge current Id 

= 10 Amp.  High compressive residual stresses from -2.9 to 1.0 GPa were observed on the 

film surface as the film grew thicker from 4 to 91 µm, measured using X-Ray Diffraction.  In 

thicker coatings, surface stress may appear low, but average stress is higher.  Thus it is 

difficult to deposit thick films   To compare surface stress for two films of the same 

thickness: Ta2 deposited at Id = 10 Amp stress = -2.7 GPa, while Ta5 deposited at Id= 0 

Amp stress = -1.5 GPa, both coatings were 10µm thick.  This is expected since when the 

discharge current Id is low, there are less ion bombardments, thus lower residual stresses.  

Hardness values stated in Table 1 were averaged throughout the thickness of the coatings.  

As the films grew thicker, hardness values decreased.  Again, when hardness is compared for 

the same thickness film at 10µm: Ta2 deposited at Id= 10 Amp is almost twice as hard as 

Ta5 deposited at Id= 0 Amp.  All Ta1-Ta5 samples showed dense and adhesive film 

morphology and bcc α-Ta phase.  In Fig. 4a, example Ta3 shows dense and adhesive 

microstructure. 

b. Crystalline lattice parameters of Cr are very close to those of steel; Cr may provide a bond 

layer for Ta deposition on steel.  In Table 1, Ta/Cr1-Ta/Cr5 samples were deposited to see 

the effect of sputtered Cr interface layer of various thicknesses.  Sputtered Cr appeared to be 

harder than Ta, but hardness in Ta is not affected by the thickness of interface Cr.  In Figs. 4b 

and 4c, adhesion between Ta and Cr did not appear to be good, a line was observed, while 

Ta3 directly deposited directly on steel in Fig. 4a showed very good adhesion.  The results 

suggested that sputtered Cr interface layer for Ta deposition may not be the best approach.  

c. The thick Ta12 series samples listed in Table 1 were deposited on flat polished steel samples; 

while thick Ta13-15 and Ta13-20 samples were deposited on curved samples cut from 

120mm bore section.  All Ta coating deposited in this section appeared dense, adhesive, with 

good topography and microstructure.  In Fig. 4d, Ta 12-2 microstructure is shown.  In Figs. 

4e and 4f, Ta 13-15 topography and microstructure are shown.  As stated, all Ta coatings in 

this investigation showed nearly 100% bcc Ta.  In Fig. 5, XRD analysis of samples Ta13-15 

and Ta13-20 showed that both samples were bcc α-Ta with Ta (110) preferred orientation.  In 

Fig. 6, fractured surface of substrate steel is compared with Ta coatings for sample Ta13-15.  

The sample was frozen in liquid nitrogen and then fractured.  The dimples observed in the Ta 

fractured surface demonstrated excellent ductility, which is resilient to thermal shock 

cracking for high temperature wear and erosion gun barrel applications. 

 
ADHESION AND WEAR AND EROSION TESTING 

ASTM B571-91 groove adhesion testing was used to test mechanical adhesion strength of thick 

coatings using a tungsten carbide tool.  All thick coatings in Table 1 passed the groove adhesion 

test.  Examples of groove test results are shown in Figs. 4g and 4h for samples Ta12-2 and  
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Ta13-15. Pulsed laser heating can test the thermal damages of coatings on a substrate under 

cyclic thermal pulses [11].  In Fig. 7, comparative pulsed laser heating test results performed for 

Ta12-2 and production electroplated Cr coatings are shown.  Laser pulses at 2.5 msec, 1.0 

J/mm2, 10 cycles were used to simulate the high temperature environment of large cal firing at 

~1600C,  The 80 µm Ta12-2 sample shown on the top had no cracking, no delamination, and a 

thick HAZ (heat-affected-zone) in steel due to the smaller coatings thickness.  The HAZ is due to 

the transformation of steel from tempered to untempered martensite.  Thicker HAZ was observed 

due the relatively thin coating at 80µm.  The 125µm electroplated Cr (1966-1) results are shown 

on the bottom, extensive cracks, HAZ, damages in Cr coatings and substrate steel were observed. 

VES (Vented Erosion Simulator) has been used to simulate the thermal-mechanical-chemical 

environment of large cal firing using a steel fixture [1-2].    In Fig. 8, comparative VES testing 

results are shown for Ta13-20 on steel after 129 rounds of high erosive rounds on the top, and 

electroplated Cr after 100 rounds using the same simulated high erosive rounds on the bottom.  

There were no cracks, no delamination, no damages observed for Ta13-20.  The HAZ was also 

very thin due to the  thicker coatings.   There were extensive damages in the coatings and 

substrate for the electroplated Cr sample, including as-deposited cracks, crack propagation, new 

crack growth, re-crystallization in Cr, and white and gray layers formed in steel due to erosion 

damages [12].    

 
DISCUSSION 
 
Cr electroplating process has been used for decades for wear-corrosion-erosion protection for 

numerous industrial and military components.  Electroplated Cr demonstrates excellent adhesion 

to steel.  However, HC (high contraction) Cr has extensive as-deposited cracks; LC (low 

contraction) Cr has fewer but still has many cracks.  The cracks will propagate and new cracks 

will grow.  The cracks allow atmosphere or hot pressurized propellant gases (CO, CO2, H, H2O, 

N2, NO, H2S etc.) to penetrate the coatings and interact with the substrate causing damages and 

failures in the coatings and substrate.  Furthermore, Cr electroplating process generates toxic 

hexavalent Cr, detrimental to the environment and difficult and expensive to dispose.  In this 

paper, we have shown a new plasma enhanced deposition process to deposit pollution-free, 

crack-resistant coatings, such as Ta, in planar geometry.  The technology can be applied to coat 

industrial and military components, engine parts, gun barrels, cutting tools etc., for wear-erosion-

corrosion applications, for potential electroplated Cr replacement. 

Effective ion cleaning of substrate surface prior to deposition is critical to adhesion.  The plasma 

enhanced cleaning process using argon ions demonstrated the removal of all surface oxides and 

debris to ensure adequate adhesion.  Plasma enhanced deposition using biasing and increased 

current density can improve coatings quality, including structure, density, topography, and 

microstructure, with proper control of residual stresses.  Residual stresses can cause cracking, 

buckling, and delamination.  However, moderate compressive residual stresses on the coating 

surface in a tensile loading environment may be advantageous compared to tensile surface 

residual stresses.   Plasma enhanced deposition process with proper choice of biasing voltage and 
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discharge current to control residual stresses demonstrated excellent VES (Vented Erosion 

Simulator) test results for high temperature wear and erosion applications.          

CONCLUSIONS 
 
a) Plasma enhanced PVD techniques using external plasma generated from a filament electron 

source demonstrated effective surface cleaning of all surface oxides and debris for improved 

adhesion. 

b) Plasma enhanced PVD deposition with proper control of  residual stresses demonstrated the 

direct deposition of thick, dense, adhesive, bcc Ta coatings on A723 steel with excellent 

structure properties.  A sputtered Cr interface layer is not necessary to enhance adhesion. 

c) Pulsed Laser Heating and Vented Erosion Simulator testing demonstrated excellent high 

temperature wear and erosion properties superior to electroplated Cr coatings under the same 

testing conditions.  

d) Plasma enhanced PVD process has good potential for Cr electroplating process replacement. 
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Table 1: Experimental Conditions and Characterization of Ta and Ta/Cr depositions. 

  

Sputter Cleaning Deposition Characterization

Ta-1 Ar 150 90 120 10 30 40 0.61 10 4 Ar 4 -2.9 1379 499

Ta-2 Ar 150 90 120 10 60 40 0.59 10 4 Ar 10 -2.7 1112 499

Ta-3 Ar 150 90 120 10 300 40 0.55 10 4 Ar 46 -2.3 1011 493

Ta-4 Ar 150 90 120 10 600 40 0.54 10 4 Ar 91 -1 602 481

Ta-5 Ar 150 90 120 10 60 40 0.17 0 4 Ar 10 -1.5 552 543

Ta/Cr1 Ar 150 90 120 10 60/5 40 0.17 10 4 Ar 11/0.66 518 442

Ta/Cr2 Ar 150 90 120 10 60/10 40 0.17 10 4 Ar 12/1.24 427 499

Ta/Cr3 Ar 150 90 120 10 60/20 40 0.17 10 4 Ar 13/2.5 514/736 499

Ta/Cr4 Ar 150 90 120 10 60/40 40 0.17 10 4 Ar 11/4.88 385 530

Ta/Cr5 Ar 150 90 120 10 60/80 40 0.17 10 4 Ar 19/9.6 598/574 563

(HK50) (HK50)

Ta12-2 Ar 150 90 120 10 300 40 0.87 10 4 Kr 80

Ta12-5 Ar 150 90 120 10 600 40 1.06 10 4 Kr 100

Ta12-7 Ar 150 90 120 10 840 40 1.06 10 4 Kr 177

Ta13-15 Ar 150 120 120 10 900 40 1 10 4 Kr 161 -0.5 337 523

Ta13-20 Ar 150 +45 120 10 1200 40 1 10 4 Kr 286

Steel 

Hard 

(HK10)

Ta/Cr 

Thick 

(µm)

Ta/Cr 

Time 

(min)

Vb (V)
Ib    

(A)

Ta/Cr 

Hard 

(HK10)

Surface 

Stress 

(GPa)

Id   

(A)

Pm 

(kW)
GasSample No Gas

Flow 

Rate 

(sccm)

Time 

(min)

Vb 

(V)

Id   

(A)
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Figure 1:  Schematics of plasma enhanced magnetron system with filament generated 

plasma in additional to conventional DC magnetron plasma. 
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Figure 2: Comparison of thin “native” oxide and thermal generated oxide on gun steel 

surfaces using AES analysis. The AES sputter rate is about 30nm/min. 
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Figure 3: Cleanness study using SIMS analysis:  ASTM A723 steel, heated in O

18
 

atmosphere for 3 hrs at 350ºC to grow thick O
18 

oxide layer in addition to native O
16

 oxide 

layer.  Top- Ta7, no cleaning; Bottom- Ta 11, after cleaning for 60 minutes, native or re-

oxidized O
16

, and heat-generated O
18

 oxides were removed.
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Figure 4:  Microstructure, Topography, Groove adhesion test for Ta and Ta on Cr 

depositions on steel:  a- Ta3, b- Ta/Cr1, c- Ta/Cr5, d- Ta12-2, e- Ta13-15 microstructure, f- 

Ta12-2 groove test, g- Ta12-2 groove test, h- Ta13-15 groove test. 
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Figure 5:  XRD Phase Analysis of thick Ta depositions Ta13-15 and Ta13-20 on curved 

120mm steel barrel section, showing bcc Ta with Ta (110) preferred orientation. 
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Figure 6:  Fractured surfaces of Ta13-15 on A723 steel- Fracture in substrate steel X1500 

(left); Fracture in bcc Ta (right) showing microvoid coalescence with excellent ductile mode 

of fracture.   
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Figure 7:  Comparative Pulse Laser Heating test of  sputtered Ta versus production 

electroplated Cr coatings-  10 cycles of laser pulses at 2.5 msec, 1.0 J/mm2 simulating high 

bore temperature at ~1800K,  80 µm Ta12-2 (top), 125µm Cr (1966-1) (bottom).  
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Figure 8:  Comparative VES (Vented Erosion Simulator) Firing Test- Ta 13-20 on gun steel 

after 129 high erosive rounds (top); electroplated HC Cr coated 120mm Cr1966-1 after 100 

rounds (bottom), under the same simulated thermal-mechanical-chemical conditions as 

large cal firing. 
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